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FOREWORD

There is a need to reduce the explosive sensitivity of explesives
and propellants without sacrificipg their energy. We found that the
impact sensitivities of scme explosives can be changed by surface
modification. Propellant studies have zlso shewn that microstruc-
tural damage and dewetting have a significznt effect on the mechanical
properties of the propellant. This study is to investigate the cor-
relaticn between explosive sensitivity and surface interaction between
binder and explosive, and between chemical and mechanical rroperties
of binder and explosive formulation.

Correlations have been fvund in the model formulatiuns between
the interfacial bond .nergies measured in the surface studies and the
stresses at the onset of dewetting.
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INTRODUCTION

Plastic bonded expiosives (PBX) are mechanica. mixtures of explo-
sive crystals with polymeric binders and in scme cases plasticizers.
Different sensitivity parameters are used to characterize the reaction
of explosives toward impact, friction, temperature, and electric dis-
charge. There is a need to reduce the explosive semsitivity without
sacrificing energy. The literature suggests that surface properties
play a role in desensitization {(Reference 1). We have found that the
impact sensitivities of some explosives can be changed by suriace
modification (Reference 2). Other investigations revealed that the PBX
impact sensitivity is related to its viscoelastic dynamic energy loss
(Reference 3). Propellant studies at the Naval Weapons Center (NWC)
showed that microstructural damage and dewetting have a significant
effect on the mechanical properties of the propellant (References 4
through 6). Similar effects can te expected to occur in a PBX im that
the presence of voids and microcracks due to interfacial debonding,
dewetting, and formation of reactive free radicals by molecular bond
scission is expected to affect the 2xplosive sensitivity. To determine
the influence of these factors, the surface properties of binders and
fillers were determined (Refereancss 7 and 8). The surface properties
of binders have been determined it both the uncured and cured states
{Reference 9), and the surface properties of some explosive crystals
have been characterized in an earlier program (Reference 10).

Model explosive formulations were prepared usiaz s<lected binders
and cyclotrimethylenetrinitramine (RDX). The surface intoractions were
determined by microscopic examination, dilatation measurements, and
surface free energy studies. The NWC propellant damage energy concept
will be applied to define the Czmage properties and their relation to
sensitivity (Reference 3).

Experimental specimen: from the model formulations were sent
to Dr. R. Martinson, Lockheed, Palo Alto Laboratory, Palo Alto,
Calif. (small angle X-ray and photo acoustic studies), to
Prof. J. T. Dickinson, Washington State University (WSU), Pullman,
Wash. (fracto-emission studies), and Prof. K. Kuo, Pennsylvania
g State University (PSU), University Park, Penn. (ignition properties).
The results obtained by these investigators will be included in the
correlation studies.
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DISCUSSION

MODEL FORMULATIONS

In the beginning of the program, several binders were selected
that are representative of those currently being used in the propellant
and explosive area {Reference 8). The binders being used to establish
a data Dbase include hydroxy - terminated polybutadiene/isopherone
diisocyanate (R45M/IPDI), acrylic polymer, poly(glycidyl azide) (GAP),
and bis(azido)methyl oxetane/tetrahydrofuran (BAMO/THF).

The energetic fillers are cyclotetramethylenetetranitramine (HMX)
and RDX. RDX will be used in the first phase of model formulation.

The model formulations are designel to compare surface inter-
actions and mechanical properties. In order to have similar binder/
solid interface for all mixes, the particle size distribution and
volume percent of solid have been kept constant. The particle size
distribution of RDX is kert constant bv using the same ratioc of two
lots of RUX for 211 mixes. One iot is a Class A RDX screenzd through
a No. 100 Tvler sieve (14¢ microns) to remove larger particles and the
other lot is a Class E RDX. Since tihe density of the binder varies,
the volume percent of RDX is kept constant by changing the weight psr-
cent of RDX (calculated from the density of the binder).

Eight major mixes have been prepared from three of the baseline
binders. The status of the various specimens is givea in Table 1.

The binder/plasticizer ratio and additive contents are very criti-
cal in these energetic systems. A number of hand mixes were made to
approximate the ratios of the ingredients in order to get a rough check
on the physical properties. However, when scaled up to full-size mixes
where more accurate ingredient ratios can be obtained, some of the
mixes (BLY¥-7, BLX-10) uad inferior properties.

The composition of each mix is listed in Tables 2 through &.

TENSILE AND TORSIONAL SHEAR PROPERTIES

The tensile data were obtained from end—bonded specimens
(1 by 1 by 7.6 c¢m) (Reference 3). The torsional shear data were
obtained in a shear dilatometer designed at NWC (Reference 4). The
specimens were of the same configuratioa but not end bonded.

A typical torsional shear stress-strain curve and volume diJata-
tion curve are shewn in Figure 1. The onset of dewetting is defined
as the point at which the volume diiatation is equal to 0.1%. The
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TABLE 1. Sample Status.

Specimens shipped

NWC WSU PSU Lockheed

Mix No.| Binder system RDX variousjfracto~ jburn Lockhged acoustic
wt, % . SA% .

tests |emission|rates studies
BLX-1 | R45M/IPDI 715.5P  +€ + + + +
BLX-2 R45M/TPDI 80.0 + + + + +
BLX-3 R45M/IPDId 75.0 + + + + +
BLX-Ae GAP/TMETN ™ (1:3) 74.8 + + + + +
BLX-5 Acrylic polymer ; 72.5 - - - - -
BLX-6f Acrylic polymer | 72.5 + + + + +
BILX~-7 GAP 68.6 - - - - -
BLX-8 GAP 68.6 + + + + +
BLX-9 GAP/BTTNY (1:2) | 65.9 + + + + +
BLX-IOi BAMO/THF (1:2) 6.3 - - - - -
BLX-11" | R45M/IPDI 75.0 - - - - +

3Small angle X-ray.

bLarge particles.

“+ Sent for testing; - not sent for testinmg.
dMetriol trinitrate.

®Small hand mix.

fSystem gelled before it could be cast.
YButanetriol trinitrate.

hPlasticizer exuded from cured formulation.

i . . . .
Special mix for acoustic studies.

L LT SR TP UL RV S WL S0 SN, S, S - i » —— = = v
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TABLE 2. Composition of R45M/IPDI Formulations.
Weight percent
Haterial BIX-1 | BLX-2 | BIX-3 | BIX-11
R45M 23.20 | 18.55 | 23.20 | 23.20
IPDI 1.74 1.39 1.74 1.74
Triphenyl 0.03 0.03 0.03 0.30
bismuth
Octanoic acid 0.03 0.03 0.03 0.30
RDX (class A) 22.56 0.00 0.00 0.00
RDX (screened 0.00 | 32.00 | 30.00 | 30.00
class A)
RDX (class E) 52.50 } 48.00 | 45.00 | 45.00
Total gDX 75.00 | 80.00 | 75.00 | 75.00
NCO/OH 0.95 0.95 0.95 0.95
Shore A hardness | 58.00 | 65.00 | 63.00 .

aIsocyanate/hydroxyl ratio.

TABLE 3. Composition of GAP Formulations.

Weight percent
Haterial BLX-4 | BLX-7 | BIX-8 | BLX-9
GAP 4.95 26.73 26.72 9.18
N-100 1.30 4.68 4.68 2.09
TMETN 18.70 0.00 0.00 06.00
BTTN .00 0.00 0.00 22.63
Plasgicizer/polymer 3.00 0.00 0.00 2.00
RS-Sc 0.00 0.00 0.00 0.20
T-12 0.005 0.005 0.005 0.005
Octanoic acid 0.00 0.00 0.05 0.00
RDX (screened 44.91 27.43 27.43 39.54
= class A)

RAC RDX (class E) 29.94 | 41.15 | 41.15 | 26.36

iy Total RDX 74.80 68.60 68.60 65.90

R NCO/OH 1.50 1.00 1.00 1.30

- Shore A hardness 12.00 o 70.00 | 48.00

) aPoly functional isocyanate.

ey b

Sl Nitrocellulose.
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TABLE 4. Composition of Acrylic

Formulations.
Weight pevcent

Material BLX-5 and -6
EHA® 11.34
DOM d 8.11
TGDMé 0.10
COAA £ 0.03
t~BPB 0.29
RDX (screened class A) 29.01
RDX (class E) 43.51
Total RDX 72.51
NCO/OH 1.20
Shore A hardness 18.00

a2-ethy1hexy1acrylate.

by-viny1-2-pyrolidane.

cDioctylmaleate.

dTriethyleneglycol dimethacrylate.

®Cobaltous acetylacetonate.

fTertiary-butyl perbenzoate.

TABLE 5. Composition of BAMO/THF

Formulations.
Weight percent

Material BLX-10
BAMO/THF (5L) 9.90
N-100 1.25
BTTN 22.29
Plasticizer/polymer 2.00
RS-5 0.20
T-12 0.003
Octanoic acid 0.030
RDX (screened class A) 26.53
RDX (class E) 39.80
Total RDX 66.33
NCO/OH 0.95
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€ J Vol m 1 %
» / CRITICAL STRESS 2
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b R {ogp! _ 3

Q

>

ONSET OF
DEWETTING

sleoo'

VOLUME K\'\—-_.

RELAXATION——"

FAILURE STRAIN () —]
) ]

—

SHEAR STRAIN —am
FIGURE 1. Typical Shear Deformation.

properties of interest are the stress and strain at the onset of dewet-
ting (0.ns; €npn), initial modulus (E), maximum stress (OM), strain at
failure GF), and the maximum dilatation. ’

The initial part of all the stress-strain curves from the tensile
deformation and from the torsiopal shear deformation overlap quite well.
However, the curves begin to diverge as the strain increases past the
onset of dewetting.

The tensile and torsional shear data are given in Tables 6 and 7.
There is a large variation in modulus values which range from 0.4 to
40.6 MPa.

Both BLX-4 and -6 have very low moduli compared with the other
mixes. The BLX-4 contains a large amount of plasticizer while the
BLX-6 contains none. It is surprising that the tensile properties of
these two mixes are comparable (except for the dilatation) while their
shear properties are not. There is no good explanation for this at the
present time.

THE ONSET OF DEWETTING

The onset of dewetting is of special interest for correlating sur-
face properties and mechanical properties. In the binder system being
studied, we assume that the cohesive energy of the binder is larger
than the adhesive energy between the binder and the energetic solids.

8
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TABLE 6. Tensile Properties of Baseline Mixes.

- a b
i E, l%p | %p e Oy (AV/V Dy

1x B0« | Mpa cm/cm MPa cm/cm MFa %
BLX-1 |12.8 0.06 0.64 0.13 0.86 3.3
BLX-2 [22.4 0.05 0.84 0.09 1.12 1.3
BLX-3 |15.9 0.06 0.71 0.13 0.95 3.1
BLX-4 1.5 0.20 0.18 0.22 0.18 0'6d
BLX-6 | 1.4 0.21 0.13 0.52 0.18 cen
BLX-8 [40.6 0.04 0.77 0.05 0.90 1.1
BLX-9 | 8.2 0.06 0.31 0.10 0.40 0.7

20.1% dilatation.

bMaximum stress.

“Maximum dilatation (change in volume divided by
the original volume).

dVery large--off scale.

TABLE 7. Shear Properties of Baseline Mixes.
a b
Mix No. E, €op° Top° s Oy ov/v,,
MPa cm/cm MPa cm/cm MPa %

BLX-1 16.2 0.06 0.55 0.09 0.86 3.6
BLX~2 25.3 0.06 0.92 0.19 1.24 7.8
BLX-3 16.0 0.07 0.66 0.21 0.98 7.7
BLX-4 1.4 0.20 0.14 0.41 0.17 2.2
BLX-6 0.4 0.34 0.09 1.10 0.19 710.0
BLX-8 31.5 0.03 0.86 0.12 1.41 11.5
BLX-9 9.0 0.07 0.39 0.20 0.68 2.3

LY
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"2 i
FLENS eI
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%The modulus E is obtained by multiplying the shear
modulus by 3.

-~
o
rer
P
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Therefore, if an increasing stress is introduced into the composite,
the weakest bond will break first. The weakest bond in this case is
the binder-solid adhesion. The onset of uewetting is selected to be
the point where the volume dilatation reaches 0.1%. As a consequence,
the stress at the onset of dewetting should correspond to the energy
required to separate the binder-solid interface. For example, the
tensile stress at the onset of dewetting is 0.64 and 0.71 MPa for
BLX-1 and BLX-3, respectively. The interfacial bonds are the same for
both, but BLX~1 contains larger solid particles which are more easily
dewetted. The tensile stress at the onset of dewetting for BLX-3 and
BLX-8 are 0.71 and 0.77 MPa, respectively. The works of adhesion
between the binder and solid RDX for these two mixes, calculated to be
80 and 82 dyns/cm? (Reference 8). The work of adhesions and stress
at the onset of dewetting change in the same direction. A suitable

model for this correlation is still being sought. (This point will be
discussed in the next section.)

The effect of plasticizer in the GAP mixes can be seen at the
onset of dewetting data. The plasticizer to binder ratios for BILX-8,
BLX~9 and BLX-4 are 0, 2, and 3, respectively. As would be expected,
€0 increases while Oy decreases as the plasticizer conteut increases.
Tgus, increasing the giasticizer concentration results in more plastic
flow and lower stress build-up in the composites.

BOND ENERGY AND ONSET OF DEWETTING

D. V. Nicholson derived an equation relating the critical radius
for detachment under constant stress (Reference 12).

- WEL( +v)

r >r
= 36%3(1 - v)2

(o]

where

r = radius of spherical inclusion

r* = critical inclusion radius

W = energy absorbed in debonding
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If the onset of dewetting is assumed to be associated with the
beginning of breaking of the adhesive bond between RDX and binder, the
above equation can be rearranged to

£ = Kr Wo>

where K is a constant and o would be the stress at the onset of dewet-
ting (OOD).

The Poisson's ratio and radius of inclusion are assumed to be con-
stant for the different binders containing the same volume percent of
RDX of similar size distribution.

Since the particle sizes are left constant, r* can be included in
the constant K. Thus, if the 0 values are plotted against O 2, the
slope should be proportional to W. Such a plot for the model mixes is
shown in Figure 2 and includes both the tensile and shear data. The
fact that all of the points belonging to the hydroxy-terminated poly-
butadiene (HTPB) mixes fall on a straight line means that the amount
of energy absorbed in debonding RDX from binder is the same for all
of the HIPB mixes. A good chack for the equation that was given
previously is that the points are all on a straight line. The slope
for the GAP mixes is slightly higher. The magnitude of the difference
is not critical at the present time. At least the direction is correct

(Weap > Waren)-

50
pry SHEAR DATA A
@ Gar GAP
O MTPB
TENSILE DATA
GAP o
0 - HTPB

MODULUS (E), MPa

FIGURE 2. Determination of Debonding Energy for GAP and HTPB Mixes.
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FRACTURE TOUGHNESS

The resistance to crack propagation in a material is characterized

- by the material's fracture toughness (References 13 through 15). The
~ sample configuration for the crack opening mode (tersile deformation)
3 is shown in Figure 3. At the onset of unstable cra.k propagation the

e\ fracture toughness or stress intensity factor, KIC’ is a constant and

%zi is given by the equation

)

k3 1/2

AN K.n =0

1c = Oy F(a/b)

I where G,, is the maximun stress and a and b are defined in Figure 3. It

23 . e . .

’13 is an important parameter when describing the mechanical properties of

iﬁd a material because it characterizes the ultimate strength when flaws
ol are present. The stress intensity factors zre shown in Table 8.
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2 FIGURE 3. Opening Mode Fracture Toughness.

TABLE 8. Stress %ntgnsigy Factors
Ko XP2" @)

Sample | BIX-1 | BLX-2 | BLX-3 | BLX-4 | BLX~6 | BLY-8 |BLX-9

KIC 87.0 | 8.2 |67.9 [16.2 | 11.1 45.0 [27.2

C,

aConstant. bPascal. Mass.

12
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SPECIFIC HEAT DETERMINATION

The DSC module in a DuPount 1090 thermal analyzer was used to
determine the specific heats of the formulations. The specific heat
of a test specimen is determined by comparing the thermal lag between
sample and reference systems under "blauk" and '"sample" conditions.
The blank condition is having aluminum pans of similar weight on the
reference and sample probes. The reference system is a piece of
sapphire of known weight and specific heat. The thermal lag of the
sapphire at different temperature intervals is obtained by subtracting
the blank readings from the reference reading with the sapphire in the
aluminum pan on the sample probe. The thermal lag of the sample at
different temperature intervals is obtained similarly using the sample
in place of the sapphire.

The specific heat of the formulatioms at various temperatures are
plotted in Figure 4. The slope change of BLX-4 and BLX-9 are probably
associated with th: thermal behavior of the energetic plasticizer.
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GLASS TRANSITION TENPERATULE (Tg)
The glass transition cemperature of the model mines weve det:r-

mined from their loi.-tenperzture DSC curves obtained a: heating rates
of 10°C/min as showit in Table Y.

TABLE 9. Glass Transirion Temperature of Model iixes.

BLX-1 | Bu¥-2 | BLX-2 | BLX-4 i BLy~€ % BLz-8 | BLX-9

Tg (°2) -72 ~75 =72 =58 } <~100 ~43 i -65

| S N st

The plasticized mixes (B/¥-4 and -9) show lower glass transition
temperature than the unplasticized GAP mix (BLX-8). The glass transi-
tion temperature of BLX-6 is very low.

BURN RATES AND IGNiTABILITY

The burn rates of the model mixes are plotted in Figure 5. The
data for earh binder forx separate groups. The GAP mixes contaiming
anergetic plasticizer have the highest burn rates. We realize that
the low values are czused by an insufficient amount uof oxidizer in the
mixes of acxylic and HTPB. Howevwer, the data will be incorporated into
the Jata watrix fsr compariscon with other data ba<e systems.
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The results of the ignition studie: are shown in Table 10 (Refer-
ence 15). The first coluan provides the energy flux vaiues of the
laser to which the samples were subjected. Under each mix, the left
hand columa lists values of time in milliseconds (ms) to detect first
light which is an indication of first gasification of the sample. The
right band cciumn gives the exposure time for 50% go/no g¢ igaition (go
means that the sample will svstain combustion after the laser stimulus
ie remcved.}

A reversal occurs in ignition time at high flux levels (150 to
290 cal/m?-s) for the plasticized GAP mixes (BLX~4 and -9). This mat-
ter will be investigated as more data are collected. No data are shown
for BLX~6 and BLX-8 because there is no ignition at low flux levels and
ignition only occurs for BLX-8 at high flux levels. This lack of igni-
toon at low flux levels suggests that the formulation may be candidates
for insensitive energetic system.

SENSITIVITY

The sensitivity data for the model formulations are still being
collectod. The drop weignt impact sensitivity of the RDX model mixes
is shown in Table 11. The mixes with ETPB binder (BLX-1, -2, and -3)
and the mix with tke acrylic binder (BLY-6) are the least sensitive.
The greater semsitivity of BLX-4 and BLX-9 compared with that of BLX-8
(GAP without binder) reflect the effect of energetic plasticizers on
the drop weight impact sensitivity of a mix.

Two interesting phenomena have been observed in attempts to com-
pare drop weight impact sensitivity of original and damaged materials.
The first one is that some damaged materials become more sensitive but
the effect decreases with time due to relaxation. This suggests a
healing effect. There also appears to be a directional effect on
sensitivity. Preliminary data suggests that materials damaged by
uniaxial tension appear to have different sensitivities if tested
nornal or parallel to the tension direction. However, the data
optained to dat= for both observations are scattered and experiments
are being designed to investigate these observations. One of the dif-
ficuities encountered in using the model formulations is that the
amount of sample is limited. A large amount of each type of material
is required for the scheduled studies. To investigate these observa-
tions will require the preparation of a special mix or use of an exist-
ing propellant.

SPECIFIC IMPULSE (ISP) OF MODEL MIXES

While the hazardous properties of the model mixes are being com-
pared, it is also important to have some idea of their performance.
One orf the performance properties is the specific impulse. The
specific impulse of the formulations were calculated and are listed in

15
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TABLE 11. Drop Weight Impact Sensitivity of
RDX Model Mixes.

Mix Binder 30% height

(cm)
BLX~1 25% HTPB (coarse RDX) 46
BLX-2 20% HTPB 37
BLX-3 25% HTPB 52
BLX-4 27.2% (TMETN and GAP) 24
BLX-6 27.5% Acrylic polymer 54
BLX-~8 31.4% GAP 37
BLX-9 34.1% (BTTN and GAP) 25

Table 12 (Reference 16). The GAP formulations have the highest speci-
fic impulses. The large difference between the specific impulse of
BLX-3 and BLX-4 is caused by the higher energies of GAP and TMETN. The
specific impulse and hazardous properties of BLX-3 and -4 are compared

in Table 13.
TABLE 12. Specific Impulses of Hypothetical
RDX Model Mixes.
Mix Ingredients ISP
BLX-1 25% HTPB 214
BLX-2 20% HTPB 219
BLX-3 25% HTPB 214
BLX~4 27.2% (TMETN and GAP) 258
BLX-8 31.4% GAP 234
BLX-9 34.1% (BTIN and GAP) 256
TABLE 13. Performance of Hazardous Properties.
BLX-3 BLX~4
Composition 75% RDX plus 73.8% RDX plus 27.2%
25% HTPB (TMETN plasticized GAP)
ISP 214 258
Time tc ignition under 5.1 ms 5.1 ms
100 cal/m%-s energy
flux
Drop weight impact (cm) 52 24
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A large difference exists between the specific impulse of the
BLX-3 and BLX-4, but their times to igniftion are similar. If BLX-4 is
used instead of BLX-3, the system would gain a lot of energy and sensi-
tivity towards heat. However, BUX-4 is much more impact sensitive.
This approacl shows the need to collect a variety of data to charac-
terize the system better.

The effect of different binders and energetic plasticizers are
better illustrated in the specific impulse values cf some hypothetical
mixes as shown in Table 14. In these mixes, the RDX is 75% by weight
and the binder is 25% by weight. Thus, the values in the first column
reflect the different energies of the bipders. In the plasticized
mixes, the binder consists of two parts of energstic plasticizer to
one part of polymer. The BTIN is more energefic than the TMETN
plasticizer. The effect of energetic plasticizer is more pronounced
in the HTPB system as shown by the large difference in specific impulse
between the original and plasticized mixes.

TABLE 14. Effect of Energetic Plasticizer Omn
Specific Impulse of Model Mixes.

Binder No T™ETN:? | BTTN:?
plasticizer binder binder
HTPB 207 232 237
GAP 233 253 257
BAMO/THF 223 249 253
Zpatio = 2:1.

SURFACE ANALYSIS OF NEW POLYMER

A new thermoplastic elastomer (TPE) was received from Dr. G.
Maunser (Morton Thiokol, Wasath Division, Brigham City, Utah). Thin
films of this polymer were prepared from a dilute solution of the
polymer in a mixture of methyl isobutyl ketone and ethyl acetate.
These thin films were used in surface free energy determinations that
were done by a method similar to that of Kaelble (References 17 and 18)
and discussed in more detail in a previous report (Reference 8). The
equations are shown in Table 15. When W /20, is plotted against B,/da
as shown in Figure 6, a straight line ié obgéined, the slope of whic
lies between that for BAMO/THF and GAP. The following surface free
energy terms were used for this polymer:

a =5.7
S

D _
Yo = 32.5

18
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BS = 2.43
P _
Y = 5.9
Y = 32.5 + 5.9 = 38.4
P -
ys/ys = 0.45

W = 85.4 ergs/cm2

TABLE 15. Kaelble's Surface
Free Energy Analysis.

Yoy = Yoo * Vgu = @y * By
F%E W= sz(l + cos 6)
“ W = 2(ogag + Beby)
"

5&; =a_ + B (By/ay)

L = liquid
s = solid
YD = dispersive surface free energy

YP = polar surface free energy
Yy = total surface free energy
W_ = work of adhesion

P = polar component

D = dispersive component

19
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FIGURE 6. Surface Analysis of Thiokol's Thermoplastic Elastomer.
The location of this polymer in the surface energy diagram is shown

in Figure 7. According to this analysis, it is a better binder for RDX
than GAP or R45M, but not as good as BAMO/THF.

8.0

7.0

BAMO~THF
o 8o RDX
= ACRYLIC POLYMER
=
§
5 .
g 8o \\PARAFF'N THE SWALLER THE CIKCLE
= EX Kel—F EACH BINDER FORMS Wi
® (EXANE ,/ ROX, THE LESS LIKELY IS
AN <>ETHANOL DEBONDING
40 ~ —~— — e
10 1 1 ! ! 1 l |
0.0 10 20 3.0 40 5C 6.0 7.0 80
8 (ERGS/m?) 112

FIGURE 7. Surface Energy Diagram.
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CONCLUSIONS

Eight major RDX model formulations have been prepared from three
of the baseline binders. Specimens of various configurations were cut
and distributed to differemt investigators.

Results from these investigators are presented for the determina-
tions of surface, mechanical, thermal, burning, senmsitivity, and per-
fcrmance characteristics of the formulations.

A method has been found to correlate surface interactions and
mechanical properties by means of the onset of dewetting.

Some effect of mechanical damage on impact sensitivity has been
observed. It is being investigated further.

When performance and hazardous properties (impact and ignition)

are compared, there is an indication that several of the GAP formula-
tions may be classified as insensitive energetic systems.

21
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GLOSSARY

ARCO Atlantic Richfield Co., Philadephia, Pa.
BAMO/THF bis(azido)methyloxitane/tetrahydrofuran
BTTN butanetriol trinitrate
COAA cobaltous acetylacetonate
DOM dioctyl maleate (2-ethylhexyl isomer)
E initial modulus
EHA 2-ethylhexyl acrylate
EM maximum stress
EVA ethyl vinyl acetate
l1st. Lt. time in ms to detect first light which is an indica-

tion of first gasification of the sample

GAP poly (glycidyl azide)
HMX cyclotetramethylenetetramine
HTPB hydroxy terminated polybutadiene
IPDI isophorone diisocyanate
ISP specific impulse
KIC stress intensity factors
N-100 dismodur N-100; a polyfunctional isocyanate from Mobay
Chemical Corporation, Pittsburgh, Pa.
NCO/0H isocyanate hydroxyl ratio
£ PBX plastic bonded explosive
Y
}ﬁﬁ r, radius of spherical inclusion
Xt
S r* critical inclusion radius
) R45M ARCO made HTPB
L CL RS-5 nitrocellulose
g!i RDX cyclotrimethylenetrinitramine
i’
3, SAX small angle X-ray
8y Ep strain at failure
g?;: 8OD strain at onset of dewetting
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'55 t-BPB tertiary-butyl perbenzoate
SCu Tg glass transition temperature
3 TGDMA triethylene glycol dimethacrylate
o TMETN metriol trinitrate
. T-12 dibutyltin dilaurate
TPE thermal plastic elastomer
VP N-vinyl-2-pyrolidone
W energy absorbed in debonding
wa work of adhesion
D
4 ols Ys
aL P
" B, '
oY
Y total solid surface free energy
D . . .
Yg dispersive solid surface free energy
P .
Yq polar solid surface free energy
%D stress at onset of dewetting
Oy maximum stress

Poisson's ratio
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